Черты живых организмов. Характеристика уровней организации живого

Предмет биологии

· Биология- наука о жизни во всех ее проявлениях.

· Предметом изучения биологии являются все проявления жизни: строение и функции живых существ и их природных сообществ, распространение, происхождение и развитие, связи друг с другом и неживой природой.

· Задачи биологии - изучение закономерностей этих проявлений, раскрытие сущности жизни, систематизация живых существ.

Классификация биологических наук

· Современная биология представляет собой систему наук о живой природе, которые можно подразделить на следующие группы:

· общебиологические (цитология, генетика, эволюционное учение и др.);

· морфологические (анатомия, гистология, патологическая анатомия и др.);

· физиологические (физиология растений, животных, нормальная и патологическая физиология человека и др.);

· пограничные (биохимия, биофизика, молекулярная биология и др.).

· Соответственно объектам изучения выделяют следующие биологические науки: зоология (наука о животных), ботаника (наука о растениях), микробиология (наука о бактериях), вирусология (наука и вирусах) и др.

Методы биологии

· Наблюдение и описание

· Сравнительный метод

· Исторический метод (сравнение во времени)

· Экспериментальный метод

· Моделирование (а биологические модели Пример: аквариум б математический метод Пример: программа отражающая изменения с течением года)

Основные направления современной биологии

· Организм как единое целое

· Редукционизм (методологическая установка, которая заключается в сведении сложного к простому, целого к свойствам частей)

· Интегратизм (объединение частей в одно целое)

Определения жизни и их несовершенство

· Энгельс (конец 19в) Жизнь есть способ существования белковых тел с неотъемлемым обменом веществ с окр. средой, жизнь заканчивается и белок распадается.

· Ошибки:

1) нуклеиновые кислоты являются материальными ед. наследственности



2) открыто позже явление анабиоза, сохранение структуры клеток.

Основные свойства живых систем

· Единство химического состава. Хотя в состав живых систем входят те же химические элементы, что и в объекты неживой природы, соотношение различных элементов в живом и неживом неодинаково

· Открытость живых систем –системы берут энергию и др. из внешней среды

· Саморегуляция развелось много зайцев … появится много волков … зайцев стало меньше … волков стало меньше и тд

· Самоорганизация

· Живые системы – самовоспроизводящиеся системы. Живые системы существуют конечное время. Поддержание жизни связано с самовоспроизведением, благодаря чему живое существо воспроизводит себе подобных.

· Изменчивость живых систем. Изменчивость связана с приобретением организмом новых признаков и свойств. Это явление противоположно наследственности и играет роль в процессе отбора организмов, наиболее приспособленных к конкретным условиям.

· Способность к росту и развитию. Рост – увеличение в размерах и массе с сохранением общих черт строения; рост сопровождается развитием, то есть возникновением новых черт и качеств. Развитие может быть индивидуальным (онтогенез), когда последовательно проявляются все свойства организма, и историческим, которое сопровождается образованием новых видов и прогрессивным усложнением живой системы (филогенез).

· Раздражимость – неотъемлемая черта всего живого. Раздражимость связана с передачей информации из внешней среды к живой системе и проявляется в виде реакций системы на внешние воздействия.

· Целостность и дискретность. Живая система дискретна, так как состоит из отдельных, но взаимодействующих между собой частей, которые в свою очередь также являются живыми системами. Например: организм состоит из клеток, являющихся живыми системами; биоценоз состоит из совокупностей различных видов, которые также являются живыми системами.
С дискретностью связаны различные уровни организации живых систем, о чем будет сказано ниже. Вместе с тем живая система целостна, поскольку входящие в нее элементы обеспечивают выполнение своих функций не самостоятельно, а во взаимосвязи с другими элементами системы.

Все эти признаки одинаково важны для живых систем

Учение об уровнях структурной организации живой материи. Биологические макро- мезо- и микросистемы

Таблица 1.

Характеристика уровней организации живого

Таблица 1

Уровни организации живого

Уровень Элементарная единица, Элементарное явление Науки их изучающие
Биологические микросистемы
молекулярный Ген конвариантная репликация гена биофизика
клеточный Клетка реакции клеточного обмена цитология, генетика
Биологические мезосистемы
тканевой Ткань формирование и развитие тканей гистология, эмбриология, генетика
органный, системный Органы функционирование органа анатомия, эмбриология, физиология, генетика
организменный Организм индивидуальное развитие организма ботаника, зоология, микробиология, физиология, эмбриология, генетика
Биологические макросистемы
популяционно- видовой Популяция Изменение генофонда популяции систематика, биогеография, экология, этология, генетика
биогеоценотический Биогеоценоз Круговорот веществ в биогеоценозе экология
биосферный не выделяется экология

На системном уровне органы организма объединяются в системы органов, например, пищеварительная, дыхательная и пр. Все системы, исходя из выполняемых задач, объединяются в группы систем.

Биология (от греческих слов bios - жизнь, logos - учение) - это наука, изучающая живые организмы и явления живой природы.

Предметом изучения биологии является многообразие живых организмов, населяющих Землю.

Свойства живой природы. Все живые организмы обладают рядом общих признаков и свойств, которые отличают их от тел неживой природы. Это особенности строения, обмен веществ, движение, рост, размножение, раздражимость, саморегуляция. Остановимся на каждом из перечисленных свойств живой материи.

Высокоупорядоченное строение. Живые организмы состоят из химических веществ, которые имеют более высокий уровень организации, чем вещества неживой природы. Все организмы имеют определенный план строения - клеточный или неклеточный (вирусы).

Обмен веществ и энергии - это совокупность процессов дыхания, питания, выделения, посредством которых организм получает из внешней среды необходимые ему вещества и энергию, преобразует и накапливает их в своем организме и выделяет в окружающую среду продукты жизнедеятельности.

Раздражимость - это ответная реакция организма на изменения окружающей среды, помогающая ему адаптироваться и выжить в изменяющихся условиях. При уколе иглой человек отдергивает руку, а гидра сжимается в комочек. Растения поворачиваются к свету, а амеба удаляется от кристаллика поваренной соли.

Рост и развитие. Живые организмы растут, увеличиваются в размерах, развиваются, изменяются благодаря поступлению питательных веществ.

Размножение - способность живого к самовоспроизведению. Размножение связано с явлением передачи наследственной информации и является самым характерным признаком живого. Жизнь любого организма ограничена, но в результате размножения живая материя «бессмертна».

Движение. Организмы способны к более или менее активному движению. Это один из ярких признаков живого. Движение происходит и внутри организма, и на уровне клетки.

Саморегуляция. Одним из самых характерных свойств живого является постоянство внутренней среды организма при изменяющихся внешних условиях. Регулируются температура тела, давление, насыщенность газами, концентрация веществ и т. д. Явление саморегуляции осуществляется не только на уровне всего организма, но и на уровне клетки. Кроме того, благодаря деятельности живых организмов саморегуляция присуща и биосфере в целом. Саморегуляция связана с такими свойствами живого, как наследственность и изменчивость.

Наследственность - это способность передавать признаки и свойства организма из поколения в поколение в процессе размножения.

Изменчивость - это способность организма изменять свои признаки при взаимодействии со средой.

Биологическая система
целостная система компонентов, выполняющих определенную функцию в живых системах. К биологическим системам относятся сложные системы разного уровня организации:

Признаки биологических систем
критерии, отличающие биологические системы от объектов неживой природы:

1. Единство химического состава . В состав живых организмов входят те же химические элементы, что и в объекты неживой природы, но в виде сложных молекул.

2. Обмен веществ . Все живые организмы поглощают из среды элементы питания и выделяют продукты жизнедеятельности. В неживой природе также существует обмен веществами, однако при небиологическом круговороте они просто переносятся с одного места на другое или меняют свое агрегатное состояние: смывается почва, превращается вода в пар или лед. У живых организмов обмен веществ имеет качественно иной уровень. В круговороте органических веществ самыми существенными являются процессы синтеза и распада (ассимиляция и диссимиляция), в результате которых сложные вещества распадаются на более простые и выделяется энергия, необходимая для реакций синтеза новых сложных веществ. Обмен веществ обеспечивает относительное постоянство химического состава всех частей организма (гомеостаз) и как следствие – постоянство их функционирования в непрерывно меняющихся условиях окружающей среды.

3. Самовоспроизведение (репродукция, размножение) – свойство организмов воспроизводить себе подобных; осуществляется практически на всех уровнях жизни. Существование каждой отдельно взятой биологической системы ограничено во времени, поэтому поддержание жизни связано с самовоспроизведением. В основе самовоспроизведения лежит образование новых молекул и структур, обусловленное информацией, заложенной в нуклеиновой кислоте – ДНК, которая находится в родительских клетках.

4. Наследственность – способность организмов передавать свои признаки, свойства и особенности развития из поколения в поколение; обеспечивается стабильностью ДНК и точным воспроизведением ее химического строения. Материальными структурами наследственности, передаваемыми от родителей потомкам, являются гены, хромосомы, белки (прионы).

5. Изменчивость – способность организмов приобретать новые признаки и свойства; в ее основе лежат изменения материальных структур наследственности. Поставляет разнообразный материал для отбора особей, наиболее приспособленных к конкретным условиям существования, что, в свою очередь, приводит к появлению новых форм жизни, новых видов организмов.

6. Рост и развитие . Развитие есть необратимое направленное закономерное изменение объектов природы, приводящее к возникновению нового качественного состояния объекта. Рост – преобладают количественные изменения.

7. Раздражимость – это специфические избирательные ответные реакции организмов на изменения окружающей среды. Всякое изменение окружающих организм условий представляет собой по отношению к нему раздражение, а его ответная реакция является проявлением раздражимости. Отвечая на воздействия факторов среды, организмы взаимодействуют с ней и приспосабливаются к ней, что помогает им выжить. Реакции организмов, не имеющих нервной системы, выражаются в изменении характера движения (таксисы ) или роста (тропизмы ).

Реакции многоклеточных животных на раздражители, осуществляемые и контролируемые центральной нервной системой называются рефлексы .

8. Дискретность . Любая биологическая система состоит из отдельных изолированных (обособленных или отграниченных в пространстве), тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство. Так, любая особь состоит из отдельных клеток с их особыми свойствами, а в клетках также дискретно представлены органоиды и другие внутриклеточные образования.

Дискретность строения организма – основа его структурной упорядоченности. Она создает возможность постоянного самообновления системы путем замены износившихся структурных элементов без прекращения функционирования всей системы в целом.

10. Ритмичность – свойство, присущее как живой, так и неживой природе; проявляется в периодических изменениях интенсивности физиологических функций и формообразовательных процессов через определенные равные промежутки времени. Направлена на согласование функций организма с периодически меняющимися условиями жизни. Обусловлено различными космическими и планетарными причинами: вращением Земли вокруг Солнца и вокруг своей оси, фазами Луны и т.д.

11. Энергозависимость . Биологические системы динамичны, «открыты» для поступления энергии – не находятся в состоянии покоя, устойчивы лишь при условии периодического доступа к ним веществ и энергии извне. Живые организмы существуют до тех пор, пока в них поступают из окружающей среды энергия и вещества в виде пищи, и могут без энергии и пищи обходиться ограниченное время, то есть они энергонезависимы ограниченное время. В основном организмы используют энергию Солнца: одни непосредственно – это фотоавтотрофы (зеленые растения и цианобактерии), другие опосредованно, в виде органических веществ потребляемой пищи, – это гетеротрофы (животные, грибы и бактерии).

Живые объекты с точки зрения системных представлений. Природа жизни, разнообразие живых организмов, объединяющее их структурное и функциональное сходство всегда привлекали и привлекают пристальное внимание исследователей. С точки зрения системного подхода следует подчеркнуть, что живые системы на Земле – это открытые саморегулирующиеся, построенные из биополимеров – белков и нуклеиновых кислот (М.В. Волькенштейн). Им присущи закономерности развития, характерные для других сложных систем. Однако жизнь качественно превосходит другие формы существования материи в отношении многообразия и сложности, а также динамики протекающих в живых организмах процессов. Живые системы характеризуются гораздо более высоким уровнем пространственно-временной структурной и функциональной упорядоченности . Которая обеспечивает структурную компактность и энергетическую экономичность всего живого. Такая упорядоченность возможна только в макроскопической системе (наименьшая бактерия содержит около 10 9 атомов), иначе порядок разрушился бы флуктуациями, обусловленные тепловым движением.

Являясь открытыми системами, живые организмы обмениваются с окружающей средой энергией, веществом и информацией. При этом, в отличие от неживых систем, живым организмам присуща способность активно поддерживать упорядочение, противодействовать возрастанию энтропии внутри себя.Однако снижение энтропии в живых организмах возможно только за счет повышения энтропии в окружающей среде (в соответствии со вторым началом термодинамики для открытых систем). «Всеобщая борьба за существование живых организмов, не является борьбой за составные элементы - составные элементы всех организмов имеются налицо в избытке в воздухе, воде и недрах Земли - и не за энергию, ибо таковая содержится в изобилии во всяком теле, к сожалению, в форме непревращаемой теплоты. Но это - борьба за энтропию, которую можно использовать при переходе энергии с горячего Солнца к холодной земле» (Л.Больцман).

Все живые (биологические) системы разных уровней – организмы, популяции и т.д. – существуют в тесной взаимосвязи , обмениваясь веществом, энергией. Это позволяет рассматривать все живые системы и среду их обитания как одну масштабную разнородную систему – биосферу . Жизнь присуща только биосфере, вне ее – не существует.

Свойства живых объектов. Для решения вопроса о природе жизни, ее происхождении и эволюции на Земле целесообразно выделить основные отличительные свойства живых организмов. Следует отметить, что общепринятого определения фундаментального понятия «жизнь» сегодня нет. Однако имеют место характерные свойства, совокупность которых позволяет отличить живые организмы от объектов неживой материи:

обмен веществом и энергией : живая система постоянно обменивается веществом и энергией с окружающей средой;

дискретность и целостность : живые объекты относительно обособлены друг от друга (особи, популяции, виды), в то же время сложная организация немыслима без взаимодействия ее частей и структур – без целостности;

структурность : на всех уровнях организации живые системы образуют упорядоченные структуры;

единство химического состава : оно проявляется как на уровне химических элементов, так и на молекулярном уровне;

подвижность ;

раздражимость ;

рост и развитие : избыточное самовоспроизведение лежит в основе роста клеток, и организмов;

размножение и воспроизведение себе подобных ;

наследственность и изменчивость ;

адаптация : способность живых организмов приспосабливаться к внешним условиям, ассимилировать полученные извне вещества.

Еще раз подчеркнем, что весь комплекс этих свойств присущ живому объекту

Химическая основа жизни. В состав живой клетки входят такие же элементы, какие имеются в неживой природе. Однако ряд из них выполняют важные биологические функции. Эти элементы называются биогенными: C, H, O, N , P, S . В частности, четыре из них -C, H, O, N – составляют 96% субстрата организма человека. C, H, O - находятся в составе всех биополимеров, N , S - добавляются к ним в составе белков; N, P - в составе нуклеиновых кислот. Имеются и другие элементы, входящие в состав тех или иных организмов: Fe – в составе гемоглобина, Mg – в составе хлорофилла, Сu – в составе некоторых ферментов; I - в составе тироксина- гормона щитовидной железы; Na , K – обеспечивают проводимость импульсов в нервных волокнах; Zn – в составе инсулина, Co – в составе витамина В 12 . По процентному составу в порядке его убывания элементы образуют последовательность: O, C, H, N, Ca, K, Mg, P, S, Cl, Na, Fe ,Zn, Сu, I, F,Co.

Важнейшим компонентом жизни является вода H 2 O. Но все основные свойства жизни определяются органическими соединениями: белками, углеводами, жирами, нуклеиновыми кислотами.

Уровни организации живой материи. Проявления жизни на Земле чрезвычайно многообразны. Живые организмы представлены доядерными (прокариоты ) и ядерными (эукариоты ), одно- и многоклеточными существами. Описание разнообразных многоклеточных осуществляется на основе систематики, использующей таксоны – иерархически связанные множества. Самые масштабные таксоны - три царства : растения, грибы, животные. Эти царства объединяет разнообразные типы , классы , отряды , семейства , роды , виды , популяции и индивидуумы . Иерархическая организованность, свойственная различным сложным системам, прослеживается для живых систем. На ряду с таксономической систематикой, в настоящее время принято выделять следующие уровни организации живого :молекулярно-генетический, клеточный, организменный (онтогенетический), популяционно-видовой, биогеоценотический (экосистемный), биосферный. Понимание этого предполагает отказ от концепцииредукцианизма, в соответствии с которой все высшее сводимо к низшему (процессы жизнедеятельности – к совокупности физико-химических реакций, а целостный организм – к взаимодействию составляющих его клеток, тканей, органов и т.д.). В многоуровневой иерархической системе ниже лежащий уровень входит в более высокий как единое целое. Каждый новый уровень возникает из предыдущего посредством процессов объединения и организации его единиц (элементов) в единую систему. При этом каждый уровень является структурно и функционально автономной системой.

ОБЩАЯ ХАРАКТЕРИСТИКА ЖИЗНИ

По современным представлениям, жизнь – это особая форма существования (движения) материи в виде сложных биологических систем нуклеиновых кислот, белков и фосфорорганических соединений, обладающих свойствами саморегуляции, воспроизведения и развития вследствие преобразования веществ и энергии из внешней среды.

Одной из главных особенностей живых систем является способность синтезировать белки на основе программы, закодированной в нуклеиновых кислотах, и синтезировать нуклииновые кислоты с помощью белков. Помимо этого живые организмы имеют и целий ряд других характерных признаков и свойств, отличающих их от неживой природи:

1. Единый принцип структурной организации. Все живые организмы имеют клеточное строение. Клетка представляет собой структурно-функциональную единицу и является основой роста и развития организма.

2. Единство химического состава. В состав живых организмов входят те же химические элементы, что и в обьекты неживой природы, но соотнощение элементов разные. В живых организмах 98% состава приходится на углерод, кислород, азот и водород.

3. Обмен веществ и энергии (метаболизм). Живые организмы – открытые системы; они постоянно получают необходимые вещества из внешней среды и виделяют в неё продукты жизнедеятельности. Обмен веществ обеспечивает постоянство химического состава всех частей организма и другии проявления (признаки) жизни, а именно: рост, развитие, раздражимость, движение, размножение, изменчивость, наследственность, старость и, наконец, смерть.

4. Рост и развитие — это тесно связанные процессы. Рост – это увеличение массы, линейных размеров индивидуума (особи) и отдельных органов. Он всегда сопровождаеться развитием – качественными изменениями организма. Закономерные изменение организма от момента зарождения и до смерти носят названия индивидуального развития, или онтогенеза.

5. Раздражимость. Способность живых клеток, тканей или целого организма реагировать на внешние или внутренние воздействия; лежит в основе приспособления к изменяющимся условиям среды.

Любое изменение окружающей среды является раздражителем, а реакция организма – проявлением раздражимости.

Формы раздражимости различны у растений и животных.

Реакция многоклеточных организмов на раздражение, которое осуществляется при помощи нервной системы, называется рефлексом.

6. Наследственность заключается в способности организмов передавать свои признаки, свойства и особенности развития из поколения в поколение в неизмененённом виде. В основе наследственности лежит относительное постоянство стоения молекул ДНК.

7. Изменчивость – это способность организмов приобетать новые признаки, отличающие их от родительских форм. Она представляет материал для естественного отбора, т. е. отбора наиболее приспособленных особей к конкретным условиям существования, что в конечном итоге приводит к появлению новых форм жизнм, прогрессивному развитию живого на Земле.

8. Дисктретность (от лат.“discretus” — прерывистый, раздельный) – это означает, что любая биологическая система (клетка, организм, популяция, биоценоз) состоит из отдельных взаимодействующих частей, образующих структурно-фунциональное единство. Например, любой вид организмов включает отдельные особи. Тело высокоорганизованной особи состоит из органов, в свою очередь органы состоят из клеток.

9. Саморегуляция (авторегуляция). Это способность живых организмов поддерживать постоянство своего химического состава и интенсивность течения физиологических процессов (гомеостаз) в непрерывно меняющихся условиях среды. Данная способность осуществляется с помощью регуляторных систем, в основе деятельности которых лежит принцип обратной связи. Сигналом для включения или выключения той или иной регулирующей системы может быть концетрация какого-либо вещества или состояние какого-либо биохимического или физиологического процесса.

Например, понижение концетрации АТФ в клетке служит сигналом запускающим её синтез. После того как содержание АТФ в клетке нормализуется, интенсивность её синтеза уменьшается.

10. Адаптация (от лат. “adaptatio”- приспособление) — приспособление организма к условиям окружающей среды. Возникают в процессе естественного отбора и выражаются в особенностях строения, функций и поведения особей данного вида, способствующих их успеху в борьбе за существование.

Основные свойства и стратегия жизни:

  • способность к передаче и реализации генетической информации;
  • адаптация к условиям окружающей среды;
  • поступательное прогрессивное развитие.

Биология…

Для всех живых организмов характерно

Выберите один ответ:

a. дыхание, питание, размножение

b. образование органических веществ из неорганических

c. поглощение из почвы растворённых в воде минеральных веществ

d. активное передвижение в пространстве

Организмы растений, животных, грибов и бактерий состоят из клеток — это свидетельствует о

Выберите один ответ:

разнообразии строения живых организмов

b. связи организмов со средой обитания

c. единстве органического мира

сложном строении живых организмов

В клетках человека и животных в качестве строительного материала и источника энергии используются

Выберите один ответ:

a. белки, жиры и углеводы

b. неорганические вещества

c. вода и углекислый газ

d. гормоны и витамины Вопрос 4

Молекулы АТФ выполняют в клетке функцию

Выберите один ответ:

транспорта веществ

b. каталитическую

c. аккумулятора энергии

d. защитную

Молекулы ДНК

Выберите один ответ:

доставляют к рибосомам аминокислоты

b. переносят информацию о строении белка к рибосомам

c. переносят информацию о строении белка в цитоплазму

Строение и функции плазматической мембраны обусловлены входящими в её состав молекулами

Выберите один ответ:

гликогена и крахмала

b. клетчатки и глюкозы

c. белков и липидов

d. ДНК и АТФ

Какие организмы синтезируют органические вещества за счет энергии солнечного света

Выберите один ответ:

a. хемотрофы

b. сапротрофы

фототрофы

d. гетеротрофы

Перед митозом и мейозом в интерфазе происходит

Выберите один ответ:

a. коньюгация гомологичных хромосом

b. растворение ядерной оболочки

c. образование веретена деления

удвоение молекулы ДНК

Митоз отличается от мейоза

Выберите один ответ:

a. числом дочерних клеток и рабором хромосом в них

наличием профазы, метафазы, анафазы и телофазы

c. процессами спирализации и деспирализации хромосом

d. наличием хромосом, состоящих из двух хроматид

Объединени признаков родителей происходит в процессе

Выберите один ответ:

a. дробления зиготы

b. слияния гамет

c. партеногенеза

d. гаструляции

При половом размножении, в отличии от бесполого

Выберите один ответ:

a. увеличивается генетическое разнообразие потомства

рождается больше женских особей c. дочерний организм развивается быстрее

d. увеличивается численность популяций

Вопрос 12 Типы гамет у особи с генотипом ААВb

Выберите один ответ:

ОСНОВНЫЕ ПРИЗНАКИ ЖИВОГО

Вопрос о происхождении и сущности жизни, специфике живого вещества является ключевым для многих естественно-научных дисциплин, для формирования научной картины мира. Вся многовековая история биологической науки проходила под знаком борьбы представителей двух противоположных точек зрения на феномен жизни – механицизма и витализма. Механицизм сформировался в Новое время под влиянием успехов механики и последующим формированием механистически-материалистического мировоззрения в целом.

Сторонники механицизма и его более поздней разновидности – редукционизма не признавали качественную специфику живых организмов, считая, что жизненные процессы можно представить как результат действия физических и химических процессов.

Этой точки зрения придерживался ряд видных ученых и в ХХ веке. Так, крупнейший английский философ и математик Б.Рассел в работе «Человеческое познание» (1951 г.) писал:

«Нет основания предполагать, что живая материя управляется другими законами, чем неживая материя, и имеются серьезные основания думать, что все в поведении живой материи может теоретически быть объяснено в терминах физики и химии».

Аналогичные взгляды развивал в своей работе «Возникновение жизни» английский физик Дж.

Д.Бернал:

«Жизнь есть частичная, непрерывная, прогрессирующая, многообразная и взаимодействующая со средой самореализация потенциальных возможностей электронных состояний атомов».

Н.Бор в 30-е годы ХХ века предсказывал, что исследование жизни на атомном уровне приведет к парадоксу, аналогичному тому, который возник при исследованиях спектров атомов и который был разрешен только с помощью новой квантовой механики.

Бор считал, что:

«Существование жизни следует принимать как некий элементарный факт, который нельзя объяснить и который следует рассматривать как начальную точку биологии, точно так же как квант действия, который выглядит иррациональным с точки зрения классической механики, но оказывается фундаментальной основой атомной физики, если его рассматривать с точки зрения физики элементарных частиц. Невозможность объяснения жизненных явлений на основе законов физики или химии аналогична недостаточности механического подхода для понимания стабильности атомов».

Н.Бор рассматривал проблему связи биологии и физики на основе принципа дополнительности, считая, что собственно биологические законы дополнительны законам, которым подчиняются тела неорганического мира.

Нельзя одновременно определять физико-химические свойства организма и явления жизни – анализ свойств одного исключает подробный анализ другого.

В 1945 г. Э.Шредингер написал книгу «Что такое жизнь? С точки зрения физика», где рассмотрел три основные проблемы биофизики:

1. Термодинамические основы жизни . Организм – открытая высокоорганизованная упорядоченная система, находящаяся в неравновесном состоянии благодаря потоку энтропии во внешнюю среду, способная поддерживать упорядоченность за счет саморегуляции и самовоспроизведения.

Молекулярные основы жизни . Ген должен быть молекулой с апериодической структурой. Поставлен вопрос о структуре вещества наследственности и о причинах его устойчивого воспроизводства в ряду поколений.

Квантово-механические закономерности . Соответствие биологических процессов законам квантовой механики, что отчетливо проявляется в радиобиологических явлениях.

Сторонники витализма объясняют специфику живого существованием особых биологических закономерностей, наличием в биологических системах особой нематериальной и непознаваемой «жизненной силы», «души», которая не подчиняется физическим и химическим законам, придает живым организмам их целостность и целесообразность, особого рода упорядоченность и способность стремиться к определенным целям.

Зарождение витализма происходило во времена античности в трудах Платона, Аристотеля, Плотина. Виталисты пытаются доказать нематериальный характер жизни и невозможность понять ее сущность. Однако под влиянием успехов физики и химии, биофизики и биохимии в объяснении многих биологических процессов к середине ХХ века витализм был вытеснен из сферы биологического познания.

В настоящее время большинство ученых убеждено, что жизнь представляет собой особую форму существования материального мира.

Современная биология в вопросе о сущности жизни часто идет по пути перечисления основных свойств живых организмов. Только совокупность данных свойств дает представление о специфике живого.

К числу свойств живого относят следующие:

Метаболизм .

Наиболее важным свойством всех живых организмов является обмен веществ, или метаболизм, представляющий собой совокупность биохимических реакций, обеспечивающих жизнь. Живые организмы получают вещество, энергию и информацию из окружающей среды, используя их на поддержание своей высокой упорядоченности.

Большая часть организмов прямо или косвенно использует солнечную энергию. Процессы обмена веществ делят на анаболизм, или ассимиляцию, и катаболизм, или диссимиляцию. При анаболизме идет синтез сложных веществ из простых, сопровождающийся накоплением энергии. Катаболизм – это расщепление сложных веществ, сопровождающееся освобождением энергии. Эти две стороны обмена связаны неразрывно и протекают одновременно и непрерывно.

Каждый живой организм и каждая клетка представляют собой открытую термодинамическую систему, которая непрерывно превращает содержащуюся в органических веществах потенциальную (химическую) энергию в энергию всех рабочих процессов организма.

ОСНОВНЫЕ ПРИЗНАКИ ЖИВОГО

В конечном счете, вся энергия уходит из организма в окружающую среду и рассеивается в ней. Баланс энтропии в открытой системе определяется процессами как внутри нее, так и процессами обмена с окружающей средой. Обмен веществ в живых организмах с точки зрения термодинамики необходим для того, чтобы воспрепятствовать увеличению энтропии, обусловленному внутренними необратимыми процессами в организме.

Советский физик Я.И.Френкель писал:

«Нормальное состояние всякой мертвой системы есть состояние устойчивого равновесия, в то время как нормальное состояние всякой живой системы, с какой бы точки зрения она ни рассматривалась (механической или химической), есть состояние неустойчивого равновесия, в поддержании которого и заключается жизнь».

Существуют два вида питания организмов: автотрофное и гетеротрофное. Автотрофное питание означает синтез всех необходимых органических веществ из неорганических.

Этим видом питания обладают растения и прокариоты. Зеленые растения синтезируют органические вещества с использованием энергии Солнца путем реакции фотосинтеза. В результате фотосинтеза создается основная масса органического вещества и поддерживается газовый состав атмосферы. Гетеротрофное питание означает получение органических веществ в готовом виде, оно характерно для животных, грибов и многих бактерий.

Обмен веществ может происходить без участия кислорода – анаэробный обмен.

У большинства организмов питательные вещества расщепляются и высвобождают энергию в процессе клеточного кислородного дыхания – аэробный обмен. При нем высвобождается гораздо больше энергии.

— Сложная структура . Живые организмы характеризуются сложной, упорядоченной структурой. Уровень их организации значительно выше, чем в неживых системах.

Живые организмы не только изменяются, но и усложняются. У растения или животного появляются новые ветви или органы, отличающиеся по своему химическому составу от породивших их структур.

— Раздражимость .

Живые организмы активно реагируют на физические или химические факторы и их изменения в окружающей среде. Способность реагировать на внешние раздражения – универсальное свойство всех живых существ, как растений, так и животных.

— Размножение и рост. Все живое размножается и растет. Способность к самовоспроизведению – самая поразительная способность живых организмов. Потомство и похоже, и чем-то отличается от своих родителей. В этом проявляется действие механизма наследственности.

Адаптация. Живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни.

Адаптация помогает выжить организмам в постоянно меняющихся условиях внешней среды. Организм отвечает на изменения либо относительно быстро благодаря раздражимости, либо более длительно – путем возникновения мутаций и появления новых признаков, которые будут сохранены естественным отбором.

Передача информации . Живые организмы способны передавать потомству заложенную в них информацию, необходимую для жизни, развития и размножения. Эта информация содержится в генах – единицах наследственности, мельчайших внутриклеточных структурах.

Генетический материал определяет направление развития организма. Вот почему потомки похожи на родителей. Однако эта информация в процессе передачи несколько видоизменяется, искажается. В связи с этим потомки не только похожи на родителей, но и отличаются от них.

Гомеостаз. Гомеостазом называется относительное динамическое постоянство состава и свойств организма, устойчивость его основных физиологических функций. Живые организмы, обитающие в непрерывно изменяющихся внешних условиях, поддерживают постоянство своего химического состава и интенсивность течения всех физиологических процессов с помощью механизмов саморегуляции.

Важную роль в реализации гомеостаза играют петли обратной связи, возникающие в живом веществе и определяющие его реакции на внешние возмущения, нарушающие его стабильность. Гомеостаз – фундаментальный принцип для всего живого.

Движение. Оно более заметно у животных, чем у растений.

Из совокупности указанных признаков вытекает следующее обобщенное определение сущности живого: жизнь есть форма существования сложных открытых систем, способных к самоорганизации и самовоспроизведению.

Важнейшими функциональными веществами этих систем являются белки и нуклеиновые кислоты. Один из главных критериев жизни – способность живых организмов сохранять и передавать информацию.

Современная теоретическая биология основные свойства живого формулирует в виде пяти аксиом:

1. Все живые организмы характеризуются единством фенотипа (совокупностью всех признаков и свойств) и программой его построения – генотипа (совокупностью всех генов), передающегося по наследству из поколения в поколение (аксиома А.Вейсмана).

Генетическая программа образуется матричным путем, т.е. для строительства гена будущего поколения используется ген предшествующего поколения (аксиома Н.К.Кольцова).

При передаче генетические программы изменяются случайно и ненаправленно, также случайно они могут оказаться удачными в данной среде (1-я аксиома Ч.Дарвина).

Случайные изменения генетических программ при становлении фенотипа многократно усиливаются (аксиома Н.В.Тимофеева-Ресовского).

5. Многократно усиленные изменения генетических программ подвергаются отбору условиями внешней среды (2-я аксиома Ч.Дарвина).

Глава 39. Неклеточные формы жизни

Вирусы были открыты в 1892 г. русским ученым-ботаником Д.И.Ивановским при изучении мозаичной болезни табака (пятнистость листьев). Вирусы представляют собой неклеточные формы жизни. Они занимают промежуточное положение между живой и неживой материей, так как совмещают в себе признаки живых организмов и тел неживой природы.

Вирусы обладают рядом особенностей, отличающих их от клеточных организмов:

© не имеют клеточного строения, лишены каких-либо клеточных структур;

© лишены собственного метаболизма, так как не имеют белок-синтезирующего аппарата и механизмов получения энергии;

© отсутствует рост;

© не способны ни к делению, ни к половому размножению.

Вирусы проявляют признаки жизни только в клетке.

Вопрос о происхождении вирусов до конца не выяснен. Вирусы представляют собой автономные генетические структуры, но они не способны развиваться вне клетки. Вместе с тем, нуклеотидный состав нуклеиновых кислот и генетический код вирусов и клеточных организмов одинаков. Поэтому можно предположить, что вирусы возникли позже возникновения клеточной организации.

Наиболее вероятно, что вирусы возникли в результате деградации клеточных организмов.

Вероятно, вирусы можно рассматривать как группу генов, вышедших из-под контроля генома клетки.

Размеры вирусов колеблются от 10 до 300 нм.

Форма вирусов разнообразна: шаровидная, палочковидная, нитевидная, цилиндрическая и др.

Вирусы могут существовать в двух формах:

© в форме нуклеиновой кислоты, когда находятся в клетке-хозяине;

© в свободной форме, когда находятся вне клетки-хозяина.

Эту форму существования называют вирионом (рис. 320).

Вирионы вирусов состоят из различных компонентов:

© сердцевина - генетический материал (молекула ДНК или РНК);

© капсид - белковая оболочка нуклеиновой кислоты;

© суперкапсид - дополнительная липопротеидная оболочка (характерен только для сложноорганизованных вирусов).

Причем обе нуклеиновые кислоты могут быть как одноцепочечными, так и двухцепочечными, как линейными, так и кольцевыми.

В зависимости от типа нуклеиновой кисло

ты, входящей в состав вируса, различают:

© ДНК-геномные вирусы;

© РНК-геномные вирусы.

Капсид представляет собой оболочку вируса, образованную белковыми субъединицами, уложенными строго определенным образом.

Капсид выполняет, прежде всего, защитную функцию. Он защищает нуклеиновую кислоту вируса от различных воздействий, прежде всегоот действия многочисленных нуклеаз.

Кроме того, капсид обеспечивает осаждение вируса на поверхности клеточных мембран, так как содержит рецепторы, комплементарные рецепторам мембран клеток. Рецепторный механизм проникновения вируса в клетку обеспечивает специфичность вирусов: они поражают строго определенный круг хозяев.

Суперкапсид характерен для сложноорганизованных вирусов (вирусы ВИЧ, гриппа, герпеса).

Возникает во время выхода вируса из клетки-хозяина. Он представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.

Только внедряясь в клетку-хозяина вирус может воспроизводить себе подобных, он подавляет процессы транскрипции и трансляции веществ, необходимых самой клетке, и "заставляет" ее ферментные системы осуществлять репликацию своей нуклеиновой кислоты и биосинтез белков вирусных оболочек.

После сборки вирусных частиц клетка либо погибает, либо продолжает существовать и производить новые поколения вирусных частиц.

Цикл репродукции вируса складывается из нескольких стадий.

© Осаждение вируса на поверхность мембраны клетки. Возможно в том случае, если рецепторы клеточных мембран и капсида вируса комплементарны.

© Проникновение вируса в клетку . Многие вирусы проникают в клетку путем эндоцитоза. Образуется впячивание наружной цитоплазматической мембраны, и вирус оказывается в цитоплазме клетки.

Ферменты лизосом разрушают капсид вируса, и его нуклеиновая кислота освобождается. Некоторые вирусы проникают в клетку путем слияния мембран клеток и вирусов.

Проникновение фагов происходит за счет частичного разрушения оболочки клетки фаговым лизоцимом.

ДНК вируса проникает в клетку после сократительной реакции отростка фага.

© Синтез компонентов вируса осуществляется в несколько этапов:

¨ Подготовительный . На этом этапе происходит подавление функционирования генетического аппарата клетки, прекращается синтез белков и нуклеиновых кислот клетки, белок-синтезирующий аппарат клетки переводится под контроль генома вируса.

¨ Репликация нуклеиновой кислоты вируса .

Поскольку генетический аппарат вирусов разнообразен, механизмы репликации различны. У двухцепочечных ДНК-геномных вирусов репликация происходит так же, как у всех живых организмов.

¨ Синтез белков капсида . Биосинтез белков капсида вируса начинается позже репликации, причем используется белоксинтезирующий аппарат клетки-хозяина.

© Сборка вирионов . Сборка вирусных частиц начинается после того, как количество компонентов вируса в клетке достигает определенного предела.

Происходит самосборка, белковые субъединицы капсида определенным образом располагаются вокруг нуклеиновой кислоты.

© Выход вирусов из клетки . Чаще всего происходит в результате разрушения клетки вирусным лизоцимом. Сложноорганизованные вирусы выходят из клетки путем почкования, при этом они приобретают суперкапсид.

Вирусы способны поражать большинство существующих живых организмов, вызывая различные заболевания.

К числу вирусных заболеваний человека относятся, например, оспа, бешенство, детский паралич, корь, желтая лихорадка, инфекционный насморк и т.д. У животных известно поражение вирусом коровьей оспы и др. У растений вирусы могут определять пятнистость окраски цветков (например, у тюльпана), изменения окраски листьев (желтуха растений).

Бактериофаг состоит из головки, хвостика и хвостовых отростков, с помощью которых он осаждается на оболочке бактерий. В головке содержится ДНК. Фаг частично растворяет клеточную стенку и мембрану бактерии и за счет сократительной реакции хвостика впрыскивает свою ДНК в ее клетку.

Бактериофаги имеют большое практическое значение и являются важным объектом научных исследований в области молекулярной биологии.

Синдром приобретенного иммунного дефицита - это новое инфекционное заболевание, которое признано как первая действительно глобальная эпидемия в известной истории человечества.

Вирус иммунодефицита человека внедряется в чувствительные клетки.

Основные клетки-мишени - CD4-лимфоциты (хелперы), так как на их поверхности есть рецепторы, способные связываться с поверхностным белком ВИЧ. В меньшем числе они содержатся на мембранах макрофагов, еще в меньшем - на мембранах В-лимфоцитов.

Кроме того, ВИЧ проникает в ЦНС, поражая нервные клетки и клетки нейроглии, в клетки кишечника. Иммунная система организма человека утрачивает свои защитные свойства и оказывается не в состоянии противостоять возбудителям различных инфекций. Средняя продолжительность жизни инфицированного человека составляет 7-10 лет.

Поэтому на ее поверхности и внутри нее сохраняется множество клеточных белков. В мембрану встроены рецепторные образования, по виду напоминающие грибы. Под наружной оболочкой располагается сердцевина вируса, которая имеет форму усеченного конуса и образована особым белком. Промежуток между наружной вирусной мембраной и сердцевиной вируса заполнен тяжами вироскелета, благодаря которому сохраняется форма вируса, а сердцевина удерживается в определенном положении.

Внутри сердцевины располагаются две молекулы вирусной РНК, связанные с низкомолекулярными белками основного характера. Каждая моле кула РНК содержит 9 генов ВИЧ. Три из них являются структурными, три - регуляторными и три - дополнительными. Эти гены содержат информацию, необходимую для продукции белков, которые управляют способностью вируса инфицировать клетку, реплицироваться и вызывать заболевание. Кроме того, сердцевина содержит фермент обратную транскриптазу, осуществляющую синтез вирусной ДНК с молекулы вирусной РНК.

Пути распространения ВИЧ инфекции

Источником заражения служит человек - носитель вируса иммунодефицита.

Это может быть больной с различными проявлениями болезни, или человек, не имеющий признаков заболевания (бессимптомный вирусоноситель).

СПИД передается только от человека к человеку:

© половым путем;

© через кровь и ткани, содержащие вирус иммунодефицита;

© от матери к плоду и новорожденному.



error: Контент защищен !!